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▪ Conclusions

2



Composition Use Cases in Next-Generation HPC

▪ End-to-end science workflows 
▪ Coupled simulation, analysis, and tools 
▪ In-situ and in-transit analytics 

▪ Multi-physics applications 
▪ Application Introspection 
▪ Performance analysis, concurrency throttling 
▪ Debugging 

▪ This presentation concentrates on co-located simulation 
and analytics workloads
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Why Composition is Important

▪ Data movement is 
expensive 
▪ Writes to filesystem 

especially 
▪ Need to compartmentalize 

complexity 
▪ Jamming everything 

into one executable is a 
pain, fragile
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Programming Models: OS Support for Adaptive Runtimes 

• Identify separation of concerns between adaptive runtime and 
OS support 
–Distinguish between mechanisms and policies 
–Resource management: core, memory, network, energy 
–Enable user level implementations and policies 
–Identify the protection and isolation requirements 

• Approach:  
–Top-down – examine runtime APIs, determine lacking OS support 
–Bottom-up – propose novel OS APIs,  examine runtime implementation 
–Mantra: check first if it can be done at the user level 

• Yardstick for success – application performance and ease of 
development 
–Performance metrics – time, energy 
–Software engineering metrics – “composability”, “tunability” 

Energy and Power 

• Develop APIs to enable 
energy and power research 

• Power/resilience modeling 
• Adaptive virtualization 

–Can virtualization enable 
power/resilience trade-offs for 
unmodified applications? 

• Application-centric power 
management 
–What power “knobs” are worth 

exposing to applications? 
Many stakeholders may 

influence power management 
in future HPC systems (HPCS) 

Scheduling 

• Interfaces, policies, mechanisms to coordinate 
across enclaves 
–Scheduling/co-scheduling of composite applications across 

multiple enclaves 
–Reduce power consumption, data movement 

• Lower-level (i.e. NVL) mechanisms to enable 
scheduling R&D at higher levels 

• Mathematical scheduling 
–Using constrained optimization techniques (i.e. convex 

quadratic programming) 
–Explore ways to facilitate compute-intensive solutions 

Resilience 

• Resilience building blocks 
–Membership management protocols with different consistency 
–Persistent state management (resilient distr. key/value stores) 
–Reliable/unreliable publish/subscribe event notification APIs 

• OS/R hardening 
–Identifying most vulnerable and most important data structures 
–Protecting them against silent data corruption 

• Fault injection capabilities 
–Support fault sensitivity and coverage analysis 
–Support controlled experiments in fault detection, propagation, 

handling in OS/R and higher software layers 
• Tunable resilience and cross-layer/-enclave 

coordination 
–Cost model of different cross-layer/-enclave resilience choices 
–Inter-enclave workflow coordination that annotates data 
–Interfaces for autonomic management 

Global Information Bus (GIB) 

• Goal: to provide a scalable data transfer service to 
Hobbes OS/R components running throughout system 
–Broadcast and multicast 
–Data aggregation 
–Point-to-point 

 
• Approach: a hierarchy of GIB components rooted at a 

service node 
–Hierarchy enables parallelism in data transfers 
–Fan-out limits keeps any node from becoming a bottleneck 
–User-defined and built-in aggregation operators support control 

of data volume 
–Possibly based on MRNet scalable tool infrastructure 

Service node 

GIB 

GIB 

GIB 

GIB 

GIB 

GIB 

GIB 

= System node 

= GIB 

= Hobbes components 
   (e.g., Enclave Layer, 
    Node Virtualization 
    Layer) 

Binary tree organization shown 
for illustrative purposes only; real 
GIB organization will use larger 
(and perhaps variable) fan-out at 
each GIB node. 

= GIB communication 
   channel 

… 

… 

… 

… 

… 

… 

… 

… 

Application Composition as a Driving Force 

• More complex workflows are driving need for advanced OS services 
and capability 
–Extreme-scale applications will continue to evolve beyond a space-shared batch 

scheduled approach 
• HPC application developers are employing ad hoc solutions 

–Interfaces and tools like mmap, ptrace, Python for coupling codes and sharing data 
• Tools stress OS functionality because of these legacy APIs and services 
• More attention needed on how multiple applications are composed 
• Example use cases 

–Ensemble calculations for uncertainty quantification 
–Multi-{material, physics, scale} simulations 
–In-situ analysis 
–Graph analytics 
–Performance and correctness tools 

• Requirements are driven by applications 
–Not necessarily by parallel programming model 
–Somewhat insulated from hardware advancements 

Exploratory Analytics Scenarios 

Application Visualization File System Display 

Bad: Insufficient bandwidth 

Application Visualization File System Display 

Bad: Inefficient use of compute infrastructure 

Application/Visualization File System Display 

Good! But Application and Visualization have different OS/R requirements 

Composition + Virtualization 
Solution for Exploratory Analytics 

• Provide an environment that 
allows 
–Each application component to 

run on the OS/R it prefers 
–Offers abstractions for 

interactions between 
components with high 
performance 

–Supports mapping components 
to resources for best 
performance 

• Filter (enclave 2) co-located 
with simulation app 
–Reduce network communication 

to viz enclave 

A Multi-Physics Example 
• Consortium for Advanced Simulation of Light Water 

Reactors (CASL) 
–Virtual Environment for Reactor Analysis (VERA) 

• Thermal hydraulics, neutron transport, materials models, crack 
propagation, multiphase boiling, … 

Node Virtualization Layer (NVL) 

• Goal: Support multiple OS/R stacks running 
simultaneously on a single physical node, enable 
them to share resources efficiently 
–No one-size fits all OS/R solution 
–Minimize data movement by co-locating cooperating OS/R 

stacks (e.g., simulation and analysis OS/R stacks) 

• Supported Usage Models: 

App 

NVL 

App 

Guest OS/R 

Virtual Node Native Virtual Machine 

App App 

NVL 

OS/R OS/R App 

NVL 

App runs directly on 
NVL, lightweight OS  

App runs on guest 
OS/R stack 

Apps run on best OS/R 
stack for app, cooperate 

Starting Points for Hobbes NVL 

Kitten Lightweight Kernel 
• Base OS functionality 
• Provides lightweight native 

environment for scalable HPC 
apps 
https://software.sandia.gov/trac/kitten 

Palacios Virtual Machine Monitor 
• Hypervisor functionality 
• Provides scalable guest OS/R 

environment for apps that need full OS 
functionality 

http://v3vee.org/palacios/ 

Refactor into NVL, 
Hobbes OS/R composition requirements drive new 

OS mechanisms and interfaces 

Virtualization R&D Areas 

• High performance virtualization 
–HAL / NVL architecture 
–Interfaces for virtual node composition 
–High-performance network virtualization 
–Quality of Service 

• High-Risk / High-Impact 
–NVL-level autonomic adaption for specified power, energy,  

and/or performance goals 
–Hybrid virtual machines for parallel language OS/R stacks, 

provide custom virtual cores specialized for language 
implementation 

–Para-native approach, run multiple native OS instances 
simultaneously without relying on hardware virtualization 
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Enclave OS/R Layer 

• An enclave is a partition of the system  
allocated to a single application (component) or 
service 
–Primarily a container and unit of organization 
–Provides a single OS/R environment to the application 

• Functionality (APIs) associated with enclaves 
–Membership management 

• Resources managed by SGOS Scheduling and Resource 
Management subsystem  

–Basic job-level collectives 
• E.g., application launch, termination, pause, resume, … 

–Autonomic monitor-analyze-plan-execute capabilities 
–Composition of enclaves to assemble applications 

• Provide each application component (enclave) the OS/R it needs 
• Provide low-level mechanisms to connect the components (and 

OS/Rs) 

A Deeper Look at Composition 

Intra-Node Composition 
• Components co-located on same 

set of nodes 
• Virtualization used to isolate NOS 

environments on each node 
• Composition (coupling) takes 

place via shared memory 

Inter-Node Composition 
• Components deployed to 

separate sets of nodes 
• Composition (coupling) takes 

place via network 

Composition Research Approach 

• Key: selective and limited breaking of isolation between 
NOS instances 

• Need to develop appropriate abstraction for low-level 
communication between different runtimes and OSes 
–Analogous to Portals 

• And high-performance implementations 

A couple of ideas… 
• Virtual network interfaces (vNICs) for network-based sharing 

–Zero-copy between cooperating co-located VM instances 
–Could map to traditional network interface in legacy OS stacks 

• Shared memory based interface for local sharing 
–SMARTMAP-like approach between cooperating co-located VM 

instances 
–Could map to traditional shared memory in legacy OS stacks 

Areas of interest 
• Core Management/Task Scheduling 

–Cooperative Scheduling 
–Group Scheduling for temporal locality 
–Composing parallel library calls 
–Support for DAG based scheduling 

• Network Management 
–Global bw/latency provisioning  
–Integration of core scheduling with network 

signaling 
• Support for Graph Analytics 

–Combination of innovative OS/R features: global 
address space, one-sided communication and 
notification, lightweight threads 

Challenges for Extreme-Scale 
Operating Systems 

• Massive parallelism (exponential growth) 
–Dynamic parallelism and decomposition 
–Advanced run-time systems to manage tasks, dependencies, and 

messaging,  linked with scheduler 
–(with dynamic RTS, power and fault mgmt: “OS noise” not an issue)  

• Power as a managed system resource 
–Adjusting arithmetic precision, fault probability, directing power within 

global view at multiple levels 
• Fault tolerance actively managed in software at many levels 

–Fault management within nodes and at global view 
• Architecture organization (significant OS/R changes) 

–Heterogeneous cores, variable precision, specialized functional units 
–Compute “everywhere”: CPU, accelerator, memory, network, storage 
–Deep memory hierarchies: 3D RAM, NVRAM on node 

• New models for deep memory hierarchy 
• Multi-level parallelism within the node to hide latency 

• Applications growing in complexity 

Hobbes Project Goals 

• Deliver prototype OS/R environment to enable R&D in 
extreme-scale scientific computing 
–Focus on mechanisms 
–Policies will follow 

• Focus on application composition as a fundamental driver 
–Develop necessary OS/R interfaces and system services required to 

support resource isolation and sharing 
–Support complex simulation and analysis workflows 

• Provide a lightweight OS/R environment with flexibility to 
build custom runtimes 
–Compose applications from a collection of enclaves 

• Leverage Kitten lightweight kernel and Palacios 
lightweight virtual machine monitor to enable high-risk 
high-impact research in virtualization, energy/power, 
scheduling, and resilience Extreme-scale OS/R components 

(Hobbes targets in bold) 

Core OS/R components 
–Enclave OS/R 

• Composition and mapping 
• Membership and collective 

operations 
–Node Virtualization Layer 

• High-performance virtualization 
• OS mechanisms for composition 

–Global Information Bus 
• Scalable communication 

between components 

Cross-cutting areas 
–Energy and power 

• APIs to enable E/P research 
–Resilience 

• OS/R resilience building blocks 
• OS/R hardening 
• Fault injection support 

–Scheduling 
• Mathematical scheduling 

–Programming models 
• Separation of concerns between 

adaptive runtimes and OS 

Hobbes Project Goals 



Example: SNAP and Spectrum Analysis

▪ SNAP 
▪ Neutronics proxy, 

based on PARTISN 
▪ Simulates reactor 

using sweep3d 
▪ Spectrum analysis 
▪ After each 

timestep 
▪ Two separate 

processes 
communicating
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Outline

▪ Application composition and why it matters 
▪ Hobbes: System software support for application 

composition 
▪ XASM: Cross Enclave Shared Memory 
▪ Conceptual modifications needed for Hobbes 
▪ Implementation for Linux and Kitten lightweight 

kernel 
▪ Performance evaluation 

▪ Future work 
▪ Conclusions
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Hobbes Project: Systems Software Support 
for Composition

▪ Application level composition difficult for application writer 
▪ Lots of research on how to support (Adios ’10, Gold-rush ’13) 
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• Goals 
• Minimize Data movement in 

composition 
• Optimizing the scheduling  of 

composed workloads

Hobbes: Composition and Virtualization 
as the Foundations of an Extreme-Scale OS/R 

Institution (Lead) Lead PI and Co-PIs Additional Participants 
Georgia Tech Karsten Schwan Greg Eisenhauer, Ada Gavrilovska 
Indiana U Thomas Sterling Kevin Bohan, Maciej Brodowicz, Luke D'alessandro, Andrew Lumsdaine, 

Marcin Zalewski 
LANL Michael Lang Noah Evans, Latchesar Ionkov, Patrick McCormick 
LBNL Costin Iancu 
NC State U Frank Mueller David Fiala 
Northwestern U Peter Dinda Kyle Hale, Maciej Swiech 
ORNL David E. Bernholdt Christian Engelmann, Hasan Abbasi, Scott Klasky, Arthur B. Maccabe, 

Thomas Naughton, Philip C. Roth, Terry Jones, Jeffrey S. Vetter 
SNL Ron Brightwell James Laros, Jay Lofstead, Ron Oldfield, Kevin Pedretti  
U Arizona David Lowenthal Peter Bailey 
UC Berkeley Eric Brewer Kevin Klues, Barrett Rhoden 
U New Mexico Patrick G. Bridges Dorian Arnold, Oscar Mondragon, Shuang Yang 
U Pittsburgh John Lange 

Project web site: http://xstack.sandia.gov/hobbes/ 

Sponsored by: Dept. of Energy, Office of Advanced 
Scientific Computing Research, 2013 Exascale Operating 

and Runtime Systems Program 

Presenters:  
David Bernholdt 

Oak Ridge National Laboratory 
bernholdtde@ornl.gov 

Kevin Pedretti 
Sandia National Laboratories 

Programming Models: OS Support for Adaptive Runtimes 

• Identify separation of concerns between adaptive runtime and 
OS support 
–Distinguish between mechanisms and policies 
–Resource management: core, memory, network, energy 
–Enable user level implementations and policies 
–Identify the protection and isolation requirements 

• Approach:  
–Top-down – examine runtime APIs, determine lacking OS support 
–Bottom-up – propose novel OS APIs,  examine runtime implementation 
–Mantra: check first if it can be done at the user level 

• Yardstick for success – application performance and ease of 
development 
–Performance metrics – time, energy 
–Software engineering metrics – “composability”, “tunability” 

Energy and Power 

• Develop APIs to enable 
energy and power research 

• Power/resilience modeling 
• Adaptive virtualization 

–Can virtualization enable 
power/resilience trade-offs for 
unmodified applications? 

• Application-centric power 
management 
–What power “knobs” are worth 

exposing to applications? 
Many stakeholders may 

influence power management 
in future HPC systems (HPCS) 

Scheduling 

• Interfaces, policies, mechanisms to coordinate 
across enclaves 
–Scheduling/co-scheduling of composite applications across 

multiple enclaves 
–Reduce power consumption, data movement 

• Lower-level (i.e. NVL) mechanisms to enable 
scheduling R&D at higher levels 

• Mathematical scheduling 
–Using constrained optimization techniques (i.e. convex 

quadratic programming) 
–Explore ways to facilitate compute-intensive solutions 

Resilience 

• Resilience building blocks 
–Membership management protocols with different consistency 
–Persistent state management (resilient distr. key/value stores) 
–Reliable/unreliable publish/subscribe event notification APIs 

• OS/R hardening 
–Identifying most vulnerable and most important data structures 
–Protecting them against silent data corruption 

• Fault injection capabilities 
–Support fault sensitivity and coverage analysis 
–Support controlled experiments in fault detection, propagation, 

handling in OS/R and higher software layers 
• Tunable resilience and cross-layer/-enclave 

coordination 
–Cost model of different cross-layer/-enclave resilience choices 
–Inter-enclave workflow coordination that annotates data 
–Interfaces for autonomic management 

Global Information Bus (GIB) 

• Goal: to provide a scalable data transfer service to 
Hobbes OS/R components running throughout system 
–Broadcast and multicast 
–Data aggregation 
–Point-to-point 

 
• Approach: a hierarchy of GIB components rooted at a 

service node 
–Hierarchy enables parallelism in data transfers 
–Fan-out limits keeps any node from becoming a bottleneck 
–User-defined and built-in aggregation operators support control 

of data volume 
–Possibly based on MRNet scalable tool infrastructure 

Service node 

GIB 

GIB 

GIB 

GIB 

GIB 

GIB 

GIB 

= System node 

= GIB 

= Hobbes components 
   (e.g., Enclave Layer, 
    Node Virtualization 
    Layer) 

Binary tree organization shown 
for illustrative purposes only; real 
GIB organization will use larger 
(and perhaps variable) fan-out at 
each GIB node. 

= GIB communication 
   channel 

… 

… 

… 

… 

… 

… 

… 
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Application Composition as a Driving Force 

• More complex workflows are driving need for advanced OS services 
and capability 
–Extreme-scale applications will continue to evolve beyond a space-shared batch 

scheduled approach 
• HPC application developers are employing ad hoc solutions 

–Interfaces and tools like mmap, ptrace, Python for coupling codes and sharing data 
• Tools stress OS functionality because of these legacy APIs and services 
• More attention needed on how multiple applications are composed 
• Example use cases 

–Ensemble calculations for uncertainty quantification 
–Multi-{material, physics, scale} simulations 
–In-situ analysis 
–Graph analytics 
–Performance and correctness tools 

• Requirements are driven by applications 
–Not necessarily by parallel programming model 
–Somewhat insulated from hardware advancements 

Exploratory Analytics Scenarios 

Application Visualization File System Display 

Bad: Insufficient bandwidth 

Application Visualization File System Display 

Bad: Inefficient use of compute infrastructure 

Application/Visualization File System Display 

Good! But Application and Visualization have different OS/R requirements 

Composition + Virtualization 
Solution for Exploratory Analytics 

• Provide an environment that 
allows 
–Each application component to 

run on the OS/R it prefers 
–Offers abstractions for 

interactions between 
components with high 
performance 

–Supports mapping components 
to resources for best 
performance 

• Filter (enclave 2) co-located 
with simulation app 
–Reduce network communication 

to viz enclave 

A Multi-Physics Example 
• Consortium for Advanced Simulation of Light Water 

Reactors (CASL) 
–Virtual Environment for Reactor Analysis (VERA) 

• Thermal hydraulics, neutron transport, materials models, crack 
propagation, multiphase boiling, … 

Node Virtualization Layer (NVL) 

• Goal: Support multiple OS/R stacks running 
simultaneously on a single physical node, enable 
them to share resources efficiently 
–No one-size fits all OS/R solution 
–Minimize data movement by co-locating cooperating OS/R 

stacks (e.g., simulation and analysis OS/R stacks) 

• Supported Usage Models: 

App 

NVL 

App 

Guest OS/R 

Virtual Node Native Virtual Machine 

App App 

NVL 

OS/R OS/R App 

NVL 

App runs directly on 
NVL, lightweight OS  

App runs on guest 
OS/R stack 

Apps run on best OS/R 
stack for app, cooperate 

Starting Points for Hobbes NVL 

Kitten Lightweight Kernel 
• Base OS functionality 
• Provides lightweight native 

environment for scalable HPC 
apps 
https://software.sandia.gov/trac/kitten 

Palacios Virtual Machine Monitor 
• Hypervisor functionality 
• Provides scalable guest OS/R 

environment for apps that need full OS 
functionality 

http://v3vee.org/palacios/ 

Refactor into NVL, 
Hobbes OS/R composition requirements drive new 

OS mechanisms and interfaces 

Virtualization R&D Areas 

• High performance virtualization 
–HAL / NVL architecture 
–Interfaces for virtual node composition 
–High-performance network virtualization 
–Quality of Service 

• High-Risk / High-Impact 
–NVL-level autonomic adaption for specified power, energy,  

and/or performance goals 
–Hybrid virtual machines for parallel language OS/R stacks, 

provide custom virtual cores specialized for language 
implementation 

–Para-native approach, run multiple native OS instances 
simultaneously without relying on hardware virtualization 
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Enclave OS/R Layer 

• An enclave is a partition of the system  
allocated to a single application (component) or 
service 
–Primarily a container and unit of organization 
–Provides a single OS/R environment to the application 

• Functionality (APIs) associated with enclaves 
–Membership management 

• Resources managed by SGOS Scheduling and Resource 
Management subsystem  

–Basic job-level collectives 
• E.g., application launch, termination, pause, resume, … 

–Autonomic monitor-analyze-plan-execute capabilities 
–Composition of enclaves to assemble applications 

• Provide each application component (enclave) the OS/R it needs 
• Provide low-level mechanisms to connect the components (and 

OS/Rs) 

A Deeper Look at Composition 

Intra-Node Composition 
• Components co-located on same 

set of nodes 
• Virtualization used to isolate NOS 

environments on each node 
• Composition (coupling) takes 

place via shared memory 

Inter-Node Composition 
• Components deployed to 

separate sets of nodes 
• Composition (coupling) takes 

place via network 

Composition Research Approach 

• Key: selective and limited breaking of isolation between 
NOS instances 

• Need to develop appropriate abstraction for low-level 
communication between different runtimes and OSes 
–Analogous to Portals 

• And high-performance implementations 

A couple of ideas… 
• Virtual network interfaces (vNICs) for network-based sharing 

–Zero-copy between cooperating co-located VM instances 
–Could map to traditional network interface in legacy OS stacks 

• Shared memory based interface for local sharing 
–SMARTMAP-like approach between cooperating co-located VM 

instances 
–Could map to traditional shared memory in legacy OS stacks 

Areas of interest 
• Core Management/Task Scheduling 

–Cooperative Scheduling 
–Group Scheduling for temporal locality 
–Composing parallel library calls 
–Support for DAG based scheduling 

• Network Management 
–Global bw/latency provisioning  
–Integration of core scheduling with network 

signaling 
• Support for Graph Analytics 

–Combination of innovative OS/R features: global 
address space, one-sided communication and 
notification, lightweight threads 

Challenges for Extreme-Scale 
Operating Systems 

• Massive parallelism (exponential growth) 
–Dynamic parallelism and decomposition 
–Advanced run-time systems to manage tasks, dependencies, and 

messaging,  linked with scheduler 
–(with dynamic RTS, power and fault mgmt: “OS noise” not an issue)  

• Power as a managed system resource 
–Adjusting arithmetic precision, fault probability, directing power within 

global view at multiple levels 
• Fault tolerance actively managed in software at many levels 

–Fault management within nodes and at global view 
• Architecture organization (significant OS/R changes) 

–Heterogeneous cores, variable precision, specialized functional units 
–Compute “everywhere”: CPU, accelerator, memory, network, storage 
–Deep memory hierarchies: 3D RAM, NVRAM on node 

• New models for deep memory hierarchy 
• Multi-level parallelism within the node to hide latency 

• Applications growing in complexity 

Hobbes Project Goals 

• Deliver prototype OS/R environment to enable R&D in 
extreme-scale scientific computing 
–Focus on mechanisms 
–Policies will follow 

• Focus on application composition as a fundamental driver 
–Develop necessary OS/R interfaces and system services required to 

support resource isolation and sharing 
–Support complex simulation and analysis workflows 

• Provide a lightweight OS/R environment with flexibility to 
build custom runtimes 
–Compose applications from a collection of enclaves 

• Leverage Kitten lightweight kernel and Palacios 
lightweight virtual machine monitor to enable high-risk 
high-impact research in virtualization, energy/power, 
scheduling, and resilience Extreme-scale OS/R components 

(Hobbes targets in bold) 

Core OS/R components 
–Enclave OS/R 

• Composition and mapping 
• Membership and collective 

operations 
–Node Virtualization Layer 

• High-performance virtualization 
• OS mechanisms for composition 

–Global Information Bus 
• Scalable communication 

between components 

Cross-cutting areas 
–Energy and power 

• APIs to enable E/P research 
–Resilience 

• OS/R resilience building blocks 
• OS/R hardening 
• Fault injection support 

–Scheduling 
• Mathematical scheduling 

–Programming models 
• Separation of concerns between 

adaptive runtimes and OS 

Hobbes Project Goals 



Hobbes Project: Why Systems Software Should 
Support Composition
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• Space sharing and time sharing 
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Pinned 
SnapshotXemem

• Space sharing and time sharing 
virtualization using “Enclaves”

• Communicate using 
optimized transports
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XASM: Optimizing Data Movement for 
Composition

▪ Transparent: No changes to APIs 
▪ Consistent: Neither side, producer or consumer, sees 

changes made by the other 
▪ Asynchronous: No locking needed
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Fig. 4: TCASM Architecture

published. Since the data was originally mapped as private,
any modifications trigger COW, resulting in new anonymous
pages in the producer’s address space. This leaves the file-
backed pages unchanged until the producer calls msync.

Every time an observer maps this producer’s memory-
mapped file into its own memory via mmap, it is given a
pointer to the most recent commit published by the producer.
If the producer calls msync, the previously file-backed pages
in the observer’s address space are converted to anonymous.
In this way, changes to the file will not be reflected in
the observer’s working set until after the observer has re-
mapped the shared memory-mapped file using via mmap again.
Figure 4 depicts the interaction between producer and observer
and the shared memory region. Initially, the producer and
observer’s virtual memory pages point to an unmodified shared
memory file. On the far right of the diagram, the producer is
modifying a page, so a new page is allocated and mapped
in the producer’s virtual memory as per the standard COW
procedure. On the left, the producer has published its changes,
so the original pages must be preserved in the observer’s
address space. Pages are copied out of the shared region and
the observers virtual address space is updated to reflect this
new state. This allows observers to advance at different rates
than the producer and one another since they always keep their
own versions of the data.

With this method, the producer task incurs a COW overhead
for each page that it modifies. However, we argue that the
overhead of COW will be overshadowed by the lack of
explicit synchronization required to manually copy the data. In
addition, an expensive copy operation can be prevented if the
producer does not modify all pages in the shared region, giving
an advantage to the COW mechanism over unconditionally
copying the entire shared range of pages in a multi-buffer
solution. Furthermore, this implementation provides significant
decoupling between producers and observers. The only shared
structure is the data itself and the producer makes its progress
continuously without coordinating with observers which are
created or destroyed independently. New types of observers
(checkpointing or visualization) could be written to work
off the same application without any modifications to the
producer. This decoupling among the producer and observers
is difficult to achieve with shared buffer solutions where
observers would have to share the same memory space as the
producer.

C. TCASM Application Interface

Using TCASM requires some simple application modifica-
tions. The data required by any observers needs to be placed
in shared regions. The code needs to be modified to publish
the new versions at points where data is consistent, by calling
msync. Simple application code would look as follows:

# application (producer)

mmap (filename,data)

Enter Timing loop {

Do work ()

call msync() # to publish data version

}

# co application (observer)

Enter Processing loop {

mmap (filename,data) # to get new data

Do work ()

call unmap()

}

The mapped filenames themselves are generated to align
with MPI ranks such that the observers can deduce the names
from information they already have.

The application using TCASM to share its data also needs
to provide some metadata to hold application-specific descrip-
tions of the structures to be shared. Information such as the
number of regions and their respective sizes, the variables and
their types, data versions, and important iterators from the
application, may be required in order to allow the observers
to interpret the data. For example, a checkpoint co-application
would need all of the information that is required to restart
the application from a checkpoint such as the input deck and
iterator values. For an analytics observer the extents and offsets
of the data structures of interest for the calculation would need
to be included. Any constants can be included here as well.
Using a defined data description standard such as HDF5 or
netCDF could be used to describe the data, we currently do
not enforce a description type, though this could easily be
supported and may provide some benefit.

The initiating application has to provide this data set for the
observing applications. The application also needs to allocate
the data structures for publishing using mmap. We developed
a C based FORTRAN library, and a custom allocator for C++
for this reason.

There are several FORTRAN wrapper functions, to facilitate
the system calls and pointer arithmetic necessary to instantiate



Trick: Copy On Write

▪ Allows “lazy” copying of data - 
can avoid the copy in some 
situations 

▪ OS notified when process trying to 
modify shared page

13

• No modification = no copy 

• Modification incurs the extra cost of a 
page fault



Outline

▪ Application composition and why it matters 
▪ Hobbes: System software support for application 

composition 
▪ XASM: Cross Enclave Shared Memory 
▪ Conceptual modifications needed for Hobbes 
▪ Implementation on the Kitten lightweight kernel 
▪ Performance evaluation 

▪ Future work 
▪ Conclusions
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Kitten Implementation

▪ Implementations heavily dependent on virtual memory 
systems 

▪ How are the virtual to physical mappings are maintained 
will affect contention and allocation policy 

▪ Need to optimize contention and allocation tradeoffs for 
performance

15



Kitten Virtual Memory

▪ In Kitten, user allocates physical memory explicitly 
▪ User chooses own virtual to physical mappings 

▪ Kitten flat-mapped, no page faults! 
▪ Additions to Kitten needed for XASM: 
▪ Add a page fault handler to Kitten 
▪ Add a mechanism to make physical memory pools 

available to individual processes

16



Kitten XASM

Producer Consumer

Kitten

// PRODUCER 
arena_map_backed_region_anywhere(my_aspace, &region, 
…); 
for(i=0; i < datalen; i++) 
  simulate(data[i]); 
aspace_copy(id, &dst, 0);



Kitten XASM

Producer Consumer

Kitten

region

// PRODUCER 
arena_map_backed_region_anywhere(my_aspace, &region, 
…); 
for(i=0; i < datalen; i++) 
  simulate(data[i]); 
aspace_copy(id, &dst, 0);

pool



Kitten XASM// PRODUCER 
arena_map_backed_region_anywhere(my_aspace, &region, 
…); 
for(i=0; i < datalen; i++) 
  simulate(data[i]); 
aspace_copy(id, &dst, 0);

Producer Consumer

Kitten

pool
region



Kitten XASM// PRODUCER 
arena_map_backed_region_anywhere(my_aspace, &region, 
…); 
for(i=0; i < datalen; i++) 
  simulate(data[i]); 
aspace_copy(id, &dst, 0);

Producer Consumer

Kitten

pool
region region



Kitten XASM// PRODUCER 
arena_map_backed_region_anywhere(my_aspace, &region, 
…); 
for(i=0; i < datalen; i++) 
  simulate(data[i]); 
aspace_copy(id, &dst, 0);

Producer Consumer

Kitten

pool
region region



Kitten XASM

Producer Consumer

Kitten

// CONSUMER 
aspace_smartmap(xasm_id, my_id, SMARTMAP_ALIGN, 
SMARTMAP_ALIGN); 
for(i=0; i < datalen; i++) 
  analyze(data[i]); 
aspace_unsmartmap(xasm_id, my_id, …); 
aspace_destroy(xasm_id);

Kitten

pool
region region



Kitten XASM

Producer Consumer

Kitten

// CONSUMER 
aspace_smartmap(xasm_id, my_id, SMARTMAP_ALIGN, 
SMARTMAP_ALIGN); 
for(i=0; i < datalen; i++) 
  analyze(data[i]); 
aspace_unsmartmap(xasm_id, my_id, …); 
aspace_destroy(xasm_id);

KittenKitten

region
pool

region



Kitten XASM

Producer Consumer

// CONSUMER 
aspace_smartmap(xasm_id, my_id, SMARTMAP_ALIGN, 
SMARTMAP_ALIGN); 
for(i=0; i < datalen; i++) 
  analyze(data[i]); 
aspace_unsmartmap(xasm_id, my_id, …); 
aspace_destroy(xasm_id);

KittenKittenKitten

region
pool

region



Kitten XASM

Producer Consumer

// CONSUMER 
aspace_smartmap(xasm_id, my_id, SMARTMAP_ALIGN, 
SMARTMAP_ALIGN); 
for(i=0; i < datalen; i++) 
  analyze(data[i]); 
aspace_unsmartmap(xasm_id, my_id, …); 
aspace_destroy(xasm_id);

KittenKittenKitten

pool
region



Outline

▪ Application composition and why it matters 
▪ Hobbes: System software support for application 

composition 
▪ Xasm: Transparently Consistent Asynchronous Shared 

Memory 
▪ Conceptual modifications need for Hobbes 
▪ Implementation for Linux and Kitten lightweight 

kernel 
▪ Performance evaluation 

▪ Future work 
▪ Conclusions
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Performance Evaluation

▪ Need to show that it works with minimal performance 
overhead 

▪ Questions to answer: 
▪ What is the overhead of page fault handling? 
▪ How does the overhead of Xasm compare to base 

case and synchronized shared memory?

27



Experimental Design

▪ Sandy bridge 2.2 GHz,12 core, 2 socket system, 24 GB 
(Hyper-threading off) 

▪ Hobbes environment on Linux 
▪ Use cycle counter for kernel measurements of page 

faults 
▪ SNAP + Spectrum Analysis as macro benchmark 
▪ Compare worst case (xpmem+spin locks), Xasm, best 

case (no analytics) 
▪ Inter-enclave on Kitten (6 trials per size) 
▪ x*y*z = 96, 200, 324, 490, 768, 6144

28



0.00

0.25

0.50

0.75

1.00

3000 6000 9000 12000
Cycles

D
en

si
ty

Operating System
Kitten
Linux

Distribution of Cycles In Page Fault Handler
Kitten faults less noisy

29



Linux slower 25% of time
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XASM Overhead Negligible Between Processes
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<4% In Worst Case
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Address Space Copies Expensive but Still 
Manageable

33
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Still Less Than 3% of Execution Time with 
Scale
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Outline

▪ Application composition and why it matters 
▪ Hobbes: System software support for application 

composition 
▪ XASM: Transparently Consistent Asynchronous Shared 

Memory 
▪ Conceptual modifications need for Hobbes 
▪ Implementation for Linux and Kitten lightweight 

kernel 
▪ Performance evaluation 

▪ Future work 
▪ Conclusions
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Future work

▪ We know what systems software can do in this case but 
we don’t know what it should do 
▪ For a Copy on Write mechanism what does fault 

tolerance and flow control look like? 
▪ Copy on Write not necessarily good for some HPC 

applications 
▪ Anything that touches every page 
▪ Wait free queue instead? 

▪ Integrate XASM with in-situ runtimes like ADIOS
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Conclusions

▪ Systems software can simplify composition 
▪ XASM is one potential mechanism 
▪ XASM is working in the Hobbes OS/R stack 
▪ Performance is reasonable and using XASM is easy 
▪ Potential piece of exascale infrastructure
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Thank You
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